3.992 \(\int \frac{(c x)^{9/2}}{(a+b x^2)^{5/4}} \, dx\)

Optimal. Leaf size=124 \[ -\frac{7 a^{3/2} c^4 \sqrt{c x} \sqrt [4]{\frac{a}{b x^2}+1} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{2 b^{5/2} \sqrt [4]{a+b x^2}}-\frac{7 a c^3 (c x)^{3/2}}{6 b^2 \sqrt [4]{a+b x^2}}+\frac{c (c x)^{7/2}}{3 b \sqrt [4]{a+b x^2}} \]

[Out]

(-7*a*c^3*(c*x)^(3/2))/(6*b^2*(a + b*x^2)^(1/4)) + (c*(c*x)^(7/2))/(3*b*(a + b*x^2)^(1/4)) - (7*a^(3/2)*c^4*(1
 + a/(b*x^2))^(1/4)*Sqrt[c*x]*EllipticE[ArcCot[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/(2*b^(5/2)*(a + b*x^2)^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.048874, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {285, 284, 335, 196} \[ -\frac{7 a^{3/2} c^4 \sqrt{c x} \sqrt [4]{\frac{a}{b x^2}+1} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{2 b^{5/2} \sqrt [4]{a+b x^2}}-\frac{7 a c^3 (c x)^{3/2}}{6 b^2 \sqrt [4]{a+b x^2}}+\frac{c (c x)^{7/2}}{3 b \sqrt [4]{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(c*x)^(9/2)/(a + b*x^2)^(5/4),x]

[Out]

(-7*a*c^3*(c*x)^(3/2))/(6*b^2*(a + b*x^2)^(1/4)) + (c*(c*x)^(7/2))/(3*b*(a + b*x^2)^(1/4)) - (7*a^(3/2)*c^4*(1
 + a/(b*x^2))^(1/4)*Sqrt[c*x]*EllipticE[ArcCot[(Sqrt[b]*x)/Sqrt[a]]/2, 2])/(2*b^(5/2)*(a + b*x^2)^(1/4))

Rule 285

Int[((c_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Simp[(2*c*(c*x)^(m - 1))/(b*(2*m - 3)*(a + b*x
^2)^(1/4)), x] - Dist[(2*a*c^2*(m - 1))/(b*(2*m - 3)), Int[(c*x)^(m - 2)/(a + b*x^2)^(5/4), x], x] /; FreeQ[{a
, b, c}, x] && PosQ[b/a] && IntegerQ[2*m] && GtQ[m, 3/2]

Rule 284

Int[Sqrt[(c_.)*(x_)]/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Dist[(Sqrt[c*x]*(1 + a/(b*x^2))^(1/4))/(b*(a +
b*x^2)^(1/4)), Int[1/(x^2*(1 + a/(b*x^2))^(5/4)), x], x] /; FreeQ[{a, b, c}, x] && PosQ[b/a]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 196

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2*EllipticE[(1*ArcTan[Rt[b/a, 2]*x])/2, 2])/(a^(5/4)*Rt[b
/a, 2]), x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{(c x)^{9/2}}{\left (a+b x^2\right )^{5/4}} \, dx &=\frac{c (c x)^{7/2}}{3 b \sqrt [4]{a+b x^2}}-\frac{\left (7 a c^2\right ) \int \frac{(c x)^{5/2}}{\left (a+b x^2\right )^{5/4}} \, dx}{6 b}\\ &=-\frac{7 a c^3 (c x)^{3/2}}{6 b^2 \sqrt [4]{a+b x^2}}+\frac{c (c x)^{7/2}}{3 b \sqrt [4]{a+b x^2}}+\frac{\left (7 a^2 c^4\right ) \int \frac{\sqrt{c x}}{\left (a+b x^2\right )^{5/4}} \, dx}{4 b^2}\\ &=-\frac{7 a c^3 (c x)^{3/2}}{6 b^2 \sqrt [4]{a+b x^2}}+\frac{c (c x)^{7/2}}{3 b \sqrt [4]{a+b x^2}}+\frac{\left (7 a^2 c^4 \sqrt [4]{1+\frac{a}{b x^2}} \sqrt{c x}\right ) \int \frac{1}{\left (1+\frac{a}{b x^2}\right )^{5/4} x^2} \, dx}{4 b^3 \sqrt [4]{a+b x^2}}\\ &=-\frac{7 a c^3 (c x)^{3/2}}{6 b^2 \sqrt [4]{a+b x^2}}+\frac{c (c x)^{7/2}}{3 b \sqrt [4]{a+b x^2}}-\frac{\left (7 a^2 c^4 \sqrt [4]{1+\frac{a}{b x^2}} \sqrt{c x}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+\frac{a x^2}{b}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )}{4 b^3 \sqrt [4]{a+b x^2}}\\ &=-\frac{7 a c^3 (c x)^{3/2}}{6 b^2 \sqrt [4]{a+b x^2}}+\frac{c (c x)^{7/2}}{3 b \sqrt [4]{a+b x^2}}-\frac{7 a^{3/2} c^4 \sqrt [4]{1+\frac{a}{b x^2}} \sqrt{c x} E\left (\left .\frac{1}{2} \cot ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )\right |2\right )}{2 b^{5/2} \sqrt [4]{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0312727, size = 74, normalized size = 0.6 \[ \frac{c^3 (c x)^{3/2} \left (7 a \sqrt [4]{\frac{b x^2}{a}+1} \, _2F_1\left (\frac{3}{4},\frac{5}{4};\frac{7}{4};-\frac{b x^2}{a}\right )-7 a+2 b x^2\right )}{6 b^2 \sqrt [4]{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(9/2)/(a + b*x^2)^(5/4),x]

[Out]

(c^3*(c*x)^(3/2)*(-7*a + 2*b*x^2 + 7*a*(1 + (b*x^2)/a)^(1/4)*Hypergeometric2F1[3/4, 5/4, 7/4, -((b*x^2)/a)]))/
(6*b^2*(a + b*x^2)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.051, size = 0, normalized size = 0. \begin{align*} \int{ \left ( cx \right ) ^{{\frac{9}{2}}} \left ( b{x}^{2}+a \right ) ^{-{\frac{5}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(9/2)/(b*x^2+a)^(5/4),x)

[Out]

int((c*x)^(9/2)/(b*x^2+a)^(5/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c x\right )^{\frac{9}{2}}}{{\left (b x^{2} + a\right )}^{\frac{5}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(9/2)/(b*x^2+a)^(5/4),x, algorithm="maxima")

[Out]

integrate((c*x)^(9/2)/(b*x^2 + a)^(5/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{\frac{3}{4}} \sqrt{c x} c^{4} x^{4}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(9/2)/(b*x^2+a)^(5/4),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(3/4)*sqrt(c*x)*c^4*x^4/(b^2*x^4 + 2*a*b*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(9/2)/(b*x**2+a)**(5/4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c x\right )^{\frac{9}{2}}}{{\left (b x^{2} + a\right )}^{\frac{5}{4}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(9/2)/(b*x^2+a)^(5/4),x, algorithm="giac")

[Out]

integrate((c*x)^(9/2)/(b*x^2 + a)^(5/4), x)